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Conjugate pairing of Lyapunov exponents for isokinetic shear flow algorithms
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Previous numerical calculations of the Lyapunov exponents for the eight particle isokinetic SLLOD algo-
rithm for shear viscosity are extended to higher shear rates and a more careful error analysis presented. These
calculations imply that within error bars, the conjugate pairing rule is satisfied for this system. The shift in the
unpaired exponent appears to be unconnected with the shift in the other conjugate pairs. This distinguishes one
degree of freedom from all others in the system.
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The numerical calculation of Lyapunov exponents begarand the departures from conjugate pairing may disappear in
with the work of Benettinet al. [1] and Shimada and Na- the large system limit, as the differences between thermody-
gashima[2] where a set of tangent vectofsr the volume namic averages in the isokinetic and isoenergetic ensemble.
elements constructed from themvas allowed to growwith Indeed, Ruelle has shown the equivalence of isokinetic and
periodic rescalingto calculate the exponents. Later methodsisoenergetic thermostats as the system size becomes large
using a set of basis vectors with the tangent vector lengthkL2].
and the orthogonality maintained by constraints was pio- In this work, we have simulated the Lyapunov spectrum
neered by Hoover and PosEB] and by Morrisg[4]. These for a two dimensional, eight particle, Gaussian isokinetic
constraint algorithms were used to calculate the LyapunowLLOD system at a number of reduced shear rateShe
spectrum of systems of particles in a nonequilibrium stationinethod used is based on the construction of a set of basis
ary state under the action of an external field and thermostatectors in the 27-dimensional phase space formed by a cen-
[9]. The Lyapunov spectrum of a Hamiltonigor equilib-  tral trajectory and 27 nearby trajectoriéthe phase-space
rium) system has exponents that occur in positive and negalimension after the elimination of conserved quantjtiés
tive pairs with the sum of each pair equal to zero, that isGaussian constraint method is used to maintain tangent vec-
\;+\_;=0. For symplectic systems this is a consequence ofor lengths and orthogonality. The constraint method has the
the symplectic eigenvalue theordi], but for equilibrium  advantage that the length and orthogonality can be checked
nonsymplectic systems time reversibility is sufficient. A nu-continuously as the simulation proceeds, as well as the usual
merical result of particular interest for thermostatted non-energy balance checks that can be done for individual trajec-
equilibrium stationary states is the conjugate pairing iyle tories in nonequilibrium steady states. Further, the sum of the
+\_;=C(F,), whereC depends on the value of the external Lyapunov exponents is related to the average thermostatting
field. This result first appeared in R¢5] based on the simu- multiplier () and the kinetic shear streéBy,) by
lation results of Morrisg7] for the isokinetic thermostatted
SLLOD algorithm([5] in two-dimensional systems of four

2dN-2d-
and eight particles. Later work by Sarman, Evans and Mor- NE ' No= (AN=d—1)( ) — Y{PV )
riss[8] supported these results but also found that the Evans = = )a) (dN—d—1)kT"

algorithm for thermal conductivity does not obey conjugate
pairing. A number of analytic results have also been ob-
tained. The conjugate pairing rule for Gaussian isokinetic This provides a further consistency check on the quality
color conductivity and for Nose-Hoover isokinetic color dif- of the Lyapunov spectrunicalculated in tangent space
fusion has been proved by Dettmann and Morf#40], but  while the right hand side is determined by properties of the
the status of the original numerically observed result forcentral trajectory alone. This system of differential equations
Gaussian isokinetic SLLOD has not been proved. Indeed rds nonautonomous due to the time dependence in the SLLOD
cent results have casted some doubt on its validify. sliding brick periodic boundary conditions. For this type of
The conjugate pairing rule is not a generic property of allsimple time dependence, we can obtain a set of autonomous
thermostatted nonequilibrium stationary states and manglifferential equations by introducing a new variable, thus
situations where it is violated have been reported. The Evansnlarging the phase space by one. However, this new autono-
thermal conductivity algorithm does not satisfy conjugatemous system must then have a Lyapunov exponent that is
pairing but it has been argued that it is possible to construatqual to zerd13].
a different algorithm that doef8]. Conjugate pairing has The state point details are as follows: a WCA potential
only been observed for isokinetic thermostats and does ndthat is, soft disk Lennard-Jones with the potential cutoff at
appear to hold for isoenergetic thermosf{&@k However, for r=2Y6y) was used fory<2.5; a reduced density of 0.4,
thermostatted Hamiltonian systems with constant thermostatemperature of 1.0, with a total simulation length of tiine
ting multiplier pairing is observed, but for this constant steps of size 0.002. For higher shear rates a potential that has
thermostat SLLOD does not pair. All of these numerical ob-four derivatives that are continuous at the cutoff was used:
servations are for systems with a small number of particlesghat is,
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¢(r)=60({1—(rL Cr=rg, 2 ) . o
¢ [T T L o =25
where the coefficients have been chosen so that the thermc [ x =3
dynamic state matches the WCA potential as closely as pos 2F ¥ g S g g e 35
sible. For higher shear rates time steps as small as 0.000 [ & a3 8 § o . ]
were needed. A fourth order Runge-Kutta scheme was use: oL 8 g g
to solve the SLLOD equations of motion with the tangent [ 3 ° ]
vector lengths constrained to 19 with a maximum devia- : o 0 ©° ° o .
tion of 10 °. The length and orthogonality of the basis vec- 2 oo00°° © e * " S o 2
tors was checked every ten time steps and on average the [ e *"* * : o 0 ° g X ¥ ]
lengths needed to be rescaled by the Gram-Schmidt proce 4F* o 0 ¢ ° ° x ¥ ; z ¥
dure on typically two of these occasions. [ °© g X 5 ]
It is difficult to determine accurate error estimates for the 6k % % z X ]
Lyapunov exponents because, for example, the raw value: [ z ¥ g ¢
for the largest exponertor largest constraint multipli¢rare ¢ 1
numbers of order one, with a standard deviation of order ten, B ; """"" 1'0 """"" 15
and the time record is correlated. The source of the large
variations is easy to understand as the Lyapunov exponent. exponent number

are the multipliers needed to maintain the basis set con- FIG. 1. The Lyapunov spectrum for two-dimensional, Gaussian

straints. In phase space the coordinates vary smoothly, bilokinetic, eight particle SLLOD, at a density of 0.4 and a tempera-
the momenta vary wildly at collisions. For a hard core inter-ture of 1. The largest exponents are almost independent of the shear
action the momentum variation is actually discontinuous atate, but the smaller exponer(end the negative branch in particu-
collision, while for smooth potentials the discontinuity is re- lar) show a systematic dependence upon shear rate.

moved, but the variation is still very rapid.

To produce reliable error bar estimates, we adopted a prcSearleset al. [11] at y=2. However, from the error esti-
cedure where the simulation was separated iNt@qual mates reported by Searles al, it was concluded that the
blocks of time steps, and the average Lyapunov exponent fafonjugate pairing rule was not satisfied. A more careful esti-
the block and standard deviation of the block averages wagation of the error bars in this study shows that the conju-
calculated. Ifo(N) is the standard deviation fot blocks of  gate pairing rule is satisfied. Thus the status of the original
equal size, then the standard deviation of the whole data sebservation of conjugate pairing for the isokinetic SLLOD
is o(1)=limy_; o(N)/\/N. Here we used typically 10 and
100 blocks. This method is correct if the block averages are 0
independent and we can use this scaling relation to checl

that the block data is independent. The resulting error quotec M N L
is the average plus or minus two standard deviati@ssthis gk ]
gives 95% confidence that the true value lies within the error [ e ] =2
bars, that is, typically one point in 20 is outside the error [ e * * v o |
bars. 2 -

The Lyapunov exponents calculated here are presented ij .y et |25
Fig. 1. The largest Lyapunov exponent is almost independen * ™ [ ]
of the shear rate, whereas increasingly smaller exponents al 3r ]
more and more shifted in a negative direction. The sums of L I 1 11 . 1 L L& ; I . 1 =3
individual conjugate pairs in all cases, we have studied, sat ITrTrrr Ty
isfy the conjugate pairing rule within numerical errors, as 4r ]
shown in Fig. 2. The only exception to this is the unpaired 1 I % $ % % ! 1435
exponent, which fory=1 shifts the same amount as the BEREEREEREE f 7 ]
other conjugate pairs. However, as the shear rate is increase Sy Ty o 15
the shift in the unpaired exponent becomes less than that @
the other pairs. This suggests a preferred direction in phasc exponent number

space, and the possibility that removing this direction will FIG. 2. Th . .

! . . » . 2. The sums of conjugate pairs of Lyapunov exponents.
give a reduced phase space for which conjugate pairing M3 otice that within error bars the conjugate pairing rule is obeyed for
be proved. . all exponents except the unpaired exponent. There is some indica-

The numerical results for the Lyapunov exponents 0b+jon of an oscillatory variation about the conjugate pairing result,
tained here agree with the original results of Mor{ék and  particularly aty=3.5. Fory=2 the unpaired exponent differs sig-
those of Sarmaret al. [8], and with the newer results of nificantly for the sum of the conjugate pairs.
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equations remains. The simulations by Seadeal, do in- in « to decrease and, therefore, expect any departures from
clude an extra degree of freedom, but they conclude that th€PR to disappear regardless of the details of the thermostat.
extra Lyapunov exponertat y=2) is 0.067:0.024, rather However, at constant field, increasing the system size even-
than zero. This again highlights the fact that the error estitually leads to a hydrodynamic instability such as turbulent
mates in their work are too optimistic by about a factor of 3or stringy phases, or even color separation in the color dif-
for this exponent. fusion algorithm. For homogeneous systems away from hy-

If the conjugate pairing is observed then this implies thalyrodynamic instabilities, we would expect that the conjugate
the phase-space contraction is applied democratically by thﬁairing rule would be true on average, but the strong form of
thermostat to all degrees of freedom, and then the i50kineti80njugate pairing would not be valid.

thermostat can be considered to be the optimal thermostat for Recent numerical studies of the Lyapunov spectrum of

;ystgm; of a few hundrgd or a feV.V thou.sand part|-tdam 1024 hard disks at equilibrium has shown that the smallest
isokinetic SLLOD the optimal algorithinlt is easy to imag- xponents appear in discrete degenerate grpis It has

ine changing the thermostat so that it is nondemocratic OE d that th N ted with the ti
nonoptimal. Applying the thermostat to only a subset of the een argued that these exponents are connected wi e ime

particles would be sufficient. We have proved the conjugat§cales associated with hydrodynamic modes in a combined
pairing theorem for Gaussiafor Nose-Hoover isokinetic tangent space and coordinate space, and a simplified random

color conductivity[9,10] and there the result is, in fact, matrix model proposed to provide justificgtion of this idea

stronger in that it holds exactly for an arbitrary piece of[15]. In the results presented here, there is no evidence of

trajectory in the comoving coordinate frame. For isokineticthese modes, but this is a consequence of the small system

SLLOD, the result can at best be considered to hold on avsize. Even if hydrodynamic modes do exist in nonequilib-

erage in the phase space that excludes the unpaired expongiitm steady states of color diffusion, the conjugate pairing
In the large system limit, we would expect the fluctuationsrule must hold for all exponents.
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