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Conjugate pairing of Lyapunov exponents for isokinetic shear flow algorithms

G. P. Morriss
School of Physics, The University of New South Wales, UNSW Sydney, New South Wales 2052, Australia

~Received 28 January 2001; published 19 December 2001!

Previous numerical calculations of the Lyapunov exponents for the eight particle isokinetic SLLOD algo-
rithm for shear viscosity are extended to higher shear rates and a more careful error analysis presented. These
calculations imply that within error bars, the conjugate pairing rule is satisfied for this system. The shift in the
unpaired exponent appears to be unconnected with the shift in the other conjugate pairs. This distinguishes one
degree of freedom from all others in the system.
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The numerical calculation of Lyapunov exponents beg
with the work of Benettinet al. @1# and Shimada and Na
gashima@2# where a set of tangent vectors~or the volume
elements constructed from them! was allowed to grow~with
periodic rescaling! to calculate the exponents. Later metho
using a set of basis vectors with the tangent vector leng
and the orthogonality maintained by constraints was p
neered by Hoover and Posch@3# and by Morriss@4#. These
constraint algorithms were used to calculate the Lyapu
spectrum of systems of particles in a nonequilibrium stati
ary state under the action of an external field and thermo
@9#. The Lyapunov spectrum of a Hamiltonian~or equilib-
rium! system has exponents that occur in positive and ne
tive pairs with the sum of each pair equal to zero, tha
l i1l2 i50. For symplectic systems this is a consequence
the symplectic eigenvalue theorem@6#, but for equilibrium
nonsymplectic systems time reversibility is sufficient. A n
merical result of particular interest for thermostatted no
equilibrium stationary states is the conjugate pairing rulel i
1l2 i5C(Fe), whereC depends on the value of the extern
field. This result first appeared in Ref.@5# based on the simu
lation results of Morriss@7# for the isokinetic thermostatte
SLLOD algorithm @5# in two-dimensional systems of fou
and eight particles. Later work by Sarman, Evans and M
riss @8# supported these results but also found that the Ev
algorithm for thermal conductivity does not obey conjuga
pairing. A number of analytic results have also been
tained. The conjugate pairing rule for Gaussian isokine
color conductivity and for Nose-Hoover isokinetic color d
fusion has been proved by Dettmann and Morriss@9,10#, but
the status of the original numerically observed result
Gaussian isokinetic SLLOD has not been proved. Indeed
cent results have casted some doubt on its validity@11#.

The conjugate pairing rule is not a generic property of
thermostatted nonequilibrium stationary states and m
situations where it is violated have been reported. The Ev
thermal conductivity algorithm does not satisfy conjuga
pairing but it has been argued that it is possible to const
a different algorithm that does@8#. Conjugate pairing has
only been observed for isokinetic thermostats and does
appear to hold for isoenergetic thermostats@8#. However, for
thermostatted Hamiltonian systems with constant thermos
ting multiplier pairing is observed, but for this constanta
thermostat SLLOD does not pair. All of these numerical o
servations are for systems with a small number of partic
1063-651X/2001/65~1!/017201~3!/$20.00 65 0172
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and the departures from conjugate pairing may disappea
the large system limit, as the differences between thermo
namic averages in the isokinetic and isoenergetic ensem
Indeed, Ruelle has shown the equivalence of isokinetic
isoenergetic thermostats as the system size becomes
@12#.

In this work, we have simulated the Lyapunov spectru
for a two dimensional, eight particle, Gaussian isokine
SLLOD system at a number of reduced shear ratesg. The
method used is based on the construction of a set of b
vectors in the 27-dimensional phase space formed by a
tral trajectory and 27 nearby trajectories~the phase-space
dimension after the elimination of conserved quantities!. A
Gaussian constraint method is used to maintain tangent
tor lengths and orthogonality. The constraint method has
advantage that the length and orthogonality can be chec
continuously as the simulation proceeds, as well as the u
energy balance checks that can be done for individual tra
tories in nonequilibrium steady states. Further, the sum of
Lyapunov exponents is related to the average thermosta
multiplier ^a& and the kinetic shear stress^Pxy

K & by

(
i 51

2dN22d21

l i5~dN2d21!^a&2
g^Pxy

K &V

~dN2d21!kT
. ~1!

This provides a further consistency check on the qua
of the Lyapunov spectrum~calculated in tangent space!
while the right hand side is determined by properties of
central trajectory alone. This system of differential equatio
is nonautonomous due to the time dependence in the SLL
sliding brick periodic boundary conditions. For this type o
simple time dependence, we can obtain a set of autonom
differential equations by introducing a new variable, th
enlarging the phase space by one. However, this new aut
mous system must then have a Lyapunov exponent tha
equal to zero@13#.

The state point details are as follows: a WCA potent
~that is, soft disk Lennard-Jones with the potential cutoff
r 521/6s) was used forg<2.5; a reduced density of 0.4
temperature of 1.0, with a total simulation length of 106 time
steps of size 0.002. For higher shear rates a potential tha
four derivatives that are continuous at the cutoff was us
that is,
©2001 The American Physical Society01-1
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f~r !5600F12S r

r c
D 2G4

; r<r c , ~2!

where the coefficients have been chosen so that the the
dynamic state matches the WCA potential as closely as
sible. For higher shear rates time steps as small as 0.0
were needed. A fourth order Runge-Kutta scheme was u
to solve the SLLOD equations of motion with the tange
vector lengths constrained to 1026 with a maximum devia-
tion of 1029. The length and orthogonality of the basis ve
tors was checked every ten time steps and on average
lengths needed to be rescaled by the Gram-Schmidt pr
dure on typically two of these occasions.

It is difficult to determine accurate error estimates for t
Lyapunov exponents because, for example, the raw va
for the largest exponent~or largest constraint multiplier! are
numbers of order one, with a standard deviation of order
and the time record is correlated. The source of the la
variations is easy to understand as the Lyapunov expon
are the multipliers needed to maintain the basis set c
straints. In phase space the coordinates vary smoothly,
the momenta vary wildly at collisions. For a hard core int
action the momentum variation is actually discontinuous
collision, while for smooth potentials the discontinuity is r
moved, but the variation is still very rapid.

To produce reliable error bar estimates, we adopted a
cedure where the simulation was separated intoN equal
blocks of time steps, and the average Lyapunov exponen
the block and standard deviation of the block averages
calculated. Ifs(N) is the standard deviation forN blocks of
equal size, then the standard deviation of the whole data
is s(1)5 limN→1 s(N)/AN. Here we used typically 10 an
100 blocks. This method is correct if the block averages
independent and we can use this scaling relation to ch
that the block data is independent. The resulting error quo
is the average plus or minus two standard deviations~as this
gives 95% confidence that the true value lies within the e
bars, that is, typically one point in 20 is outside the er
bars!.

The Lyapunov exponents calculated here are presente
Fig. 1. The largest Lyapunov exponent is almost independ
of the shear rate, whereas increasingly smaller exponent
more and more shifted in a negative direction. The sums
individual conjugate pairs in all cases, we have studied,
isfy the conjugate pairing rule within numerical errors,
shown in Fig. 2. The only exception to this is the unpair
exponent, which forg51 shifts the same amount as th
other conjugate pairs. However, as the shear rate is incre
the shift in the unpaired exponent becomes less than tha
the other pairs. This suggests a preferred direction in ph
space, and the possibility that removing this direction w
give a reduced phase space for which conjugate pairing
be proved.

The numerical results for the Lyapunov exponents
tained here agree with the original results of Morriss@4#, and
those of Sarmanet al. @8#, and with the newer results o
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Searleset al. @11# at g52. However, from the error esti
mates reported by Searleset al., it was concluded that the
conjugate pairing rule was not satisfied. A more careful e
mation of the error bars in this study shows that the con
gate pairing rule is satisfied. Thus the status of the origi
observation of conjugate pairing for the isokinetic SLLO

FIG. 1. The Lyapunov spectrum for two-dimensional, Gauss
isokinetic, eight particle SLLOD, at a density of 0.4 and a tempe
ture of 1. The largest exponents are almost independent of the s
rate, but the smaller exponents~and the negative branch in particu
lar! show a systematic dependence upon shear rate.

FIG. 2. The sums of conjugate pairs of Lyapunov exponen
Notice that within error bars the conjugate pairing rule is obeyed
all exponents except the unpaired exponent. There is some ind
tion of an oscillatory variation about the conjugate pairing res
particularly atg53.5. Forg>2 the unpaired exponent differs sig
nificantly for the sum of the conjugate pairs.
1-2
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equations remains. The simulations by Searleset al., do in-
clude an extra degree of freedom, but they conclude that
extra Lyapunov exponent~at g52) is 0.06760.024, rather
than zero. This again highlights the fact that the error e
mates in their work are too optimistic by about a factor o
for this exponent.

If the conjugate pairing is observed then this implies t
the phase-space contraction is applied democratically by
thermostat to all degrees of freedom, and then the isokin
thermostat can be considered to be the optimal thermosta
systems of a few hundred or a few thousand particles~and
isokinetic SLLOD the optimal algorithm!. It is easy to imag-
ine changing the thermostat so that it is nondemocratic
nonoptimal. Applying the thermostat to only a subset of
particles would be sufficient. We have proved the conjug
pairing theorem for Gaussian~or Nose-Hoover! isokinetic
color conductivity @9,10# and there the result is, in fac
stronger in that it holds exactly for an arbitrary piece
trajectory in the comoving coordinate frame. For isokine
SLLOD, the result can at best be considered to hold on
erage in the phase space that excludes the unpaired expo

In the large system limit, we would expect the fluctuatio
-
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in a to decrease and, therefore, expect any departures
CPR to disappear regardless of the details of the thermo
However, at constant field, increasing the system size ev
tually leads to a hydrodynamic instability such as turbule
or stringy phases, or even color separation in the color
fusion algorithm. For homogeneous systems away from
drodynamic instabilities, we would expect that the conjug
pairing rule would be true on average, but the strong form
conjugate pairing would not be valid.

Recent numerical studies of the Lyapunov spectrum
1024 hard disks at equilibrium has shown that the smal
exponents appear in discrete degenerate groups@14#. It has
been argued that these exponents are connected with the
scales associated with hydrodynamic modes in a comb
tangent space and coordinate space, and a simplified ran
matrix model proposed to provide justification of this id
@15#. In the results presented here, there is no evidence
these modes, but this is a consequence of the small sy
size. Even if hydrodynamic modes do exist in nonequil
rium steady states of color diffusion, the conjugate pair
rule must hold for all exponents.
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